RATU NAVULA COLLEGE

Y11 LIFE MATHEMATICS HOME LEARNING KIT 9

LESSON 60

LO: Applications Of Pythagoras theorem in Construction

In order to construct the corners of buildings accurately, we need right angles.
Pythagorean triad : any 3 numbers which satisfy Pythagoras theorem.

This only works for right angled triangles.

Example: Show that $\{3,4,5\}$ is a Pythagorean triad.

$$
\begin{aligned}
3^{2}+4^{2} & =5^{2} \\
9+16 & =25 \\
25 & =25
\end{aligned}
$$

Show that $\{5,12,13\}$ is a Pythagorean triad.

$$
\begin{aligned}
5^{2}+12^{2} & =13^{2} \\
25+144 & =169 \\
169 & =169
\end{aligned}
$$

Example: $\{4,5,6\}$ is not a Pythagorean triad.

$$
\begin{aligned}
4^{2}+5^{2} & \neq 6^{2} \\
41 & \neq 36
\end{aligned}
$$

Exercises

1. A builder laying the foundations of a garage wants to be sure he has the walls of the garage are at right angles. The length of the garage is 6 m and the width is 5 m .

5 m

Explain how measuring the length will check that the walls of the garage meet at right angles.
2. A 5 m ladder is leaning against a wall. The foot of the ladder is 3 m from the base of the wall.

Wall

How far up the wall does the ladder reach?
3. In the diagram $A B$ is the sloping roof of a shed. Point A is 3 m high, B is 5 m high. The width of the shed is 6 m

Find $A B$, the length of roofing iron needed for the roof.

4. A rectangular football field measures 56 m by 100 m . Calculate the distance across the field from one corner to the corner diagonally opposite.
5. The following is a building sketch of a garage

a) Find the value of x.
b) Find the value of y.
c) Find the value of z using Pythagoras Theorem.

LESSON 61

LO: Naming the sides of a right angle triangle

Review of Trigonometric Ratios

1. Hypotenuse is the longest side, opposite the right-angle.
2. Opposite side is directly opposite the angle θ
3. Adjacent side is the side next to the angle θ

SOHCAHTOA

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
\sin \theta=\frac{\mathrm{O}}{\mathrm{H}} & \cos \theta=\frac{\mathrm{A}}{\mathrm{H}} & \tan \theta=\frac{\mathrm{O}}{\mathrm{~A}}
\end{array}
$$

Note: The angle of elevation is measured up from the horizontal while the angle of depression is measured down from the horizontal.

Example: Find the value of a

1. Label the sides of the triangle

A
2. Identify the appropriate ratio to use.

We are finding the length of the opposite side and are given the length of the hypotenuse so choose the sine ratio.

$$
\begin{aligned}
& \sin \theta=\frac{\mathrm{O}}{\mathrm{H}} \\
& \sin 35^{\circ}=\frac{a}{6} \\
& a=6 \sin 35^{\circ} \\
& a=3.44 \mathrm{~cm}
\end{aligned}
$$

Applications

Buildings, surveying and architecture

Exercises

1. A 5 m ladder is leaning against a wall. The foot of the ladder is 3 m from the base of the wall.

Wall

What angle does the ladder make with the ground?
2. A 3 m ladder makes an angle of 30° with the wall.

Wall
a) How far up the wall does the ladder reach?
b) How far is the foot of the ladder from the wall?
3. A ladder makes an angle of 40° with the ground and it reaches 2.5 m up the wall.

Wall
a) Find the length of the ladder?
b) How far is the foot of the ladder from the wall?

LESSON 62

LO: Solve practical situations using Trigonometric ratios.
Example: Find the value of θ

1. Label the sides of the triangle

2. Identify the appropriate ratio to use.

We are are given O and A so choose the tangent ratio.

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{O}}{\mathrm{~A}} \\
& \tan \theta=\frac{5}{10} \\
& \theta=\tan ^{-1} \frac{5}{10} \\
& \theta=26.57^{\circ}
\end{aligned}
$$

ACTIVITY

1. A surveyor needs to determine the height of a building. He measures the angle of elevation of the top of building as 40°. The surveyor's eye level is 1.6 m above the ground.

Find the height h of the building.
2. At a certain time of the day a post, 5 m tall, casts a shadow of 2 m . What is the angle of elevation of the sun at that time?

LESSON 63

LO: applications of Pythagoras Theorem to practical situations.

Many practical problems have solutions which involve finding side lengths of right-angled triangles. A clear diagram, including all information given, is the starting point for solving such problems. Include extra lines where necessary to complete a right-angled triangle in your diagram.

ACTIVITY

1. A carpenter wants to make a roof pitched at 30° as shown.

Find the length of the beam AB .
2. A person standing 10 m away from a tree observes the top of the tree at an angle of elevation of 45°. If the person is 1.5 m tall, what is the height of the tree?
3. Determine the length of the roofing beam, l, required to support a roof of pitch 20° as shown in the diagram.

LESSON 64

LO: applications of Pythagoras Theorem to practical situations.

To solve practical problems, draw a clear diagram from the given information. If this diagram does not contain a right-angled triangle, you may need to add an extra line perpendicular to an existing line of your diagram.

ACTIVITY

1. The top of a tree, when viewed 20 m from the base of the tree, has an angle of elevation of 45°. Find the height of the tree.
2. A tree 6 m high casts a shadow 4 m long. What angle do the sun's rays make with the ground?
3. Calculate the angle of pitch $\left({ }^{\theta}\right)$ of a roof truss 5 m wide and 1.3 m high

