Ratu Navula College

Year 11 Applied Mathematics Lesson Notes – Week 3

Lesson 36

Strand 4: Graphs

Sub-Strand 4.1: Graphs

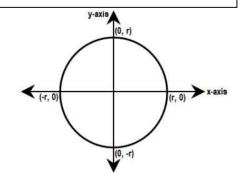
Learning Outcome: sketch a circular graph.

GRAPH OF CIRCLE CENTERED AT THE ORIGIN

• The set of all points on a plane that are fixed distance from the center.

General Form: $x^2 + y^2 = r^2$

Centre/Origin: {0,0}

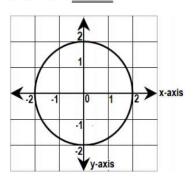


Example 1

Find the equation of the circle with centre (0,0) and radius 2.

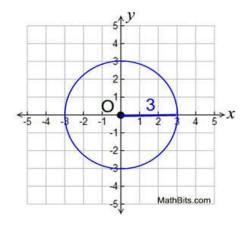
$$x^2 + y^2 = r^2$$
 (0, 0) \rightarrow center of the circle $r = 2 \rightarrow$ radius of the circle

$$x^{2} + y^{2} = r^{2} \rightarrow x^{2} + y^{2} = 2^{2} \rightarrow x^{2} + y^{2} = 4$$



Sketch the graph $x^2 + y^2 = 9$

Solution: the radius is $\sqrt{9} = 3$



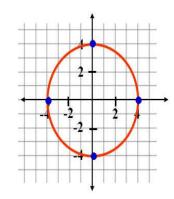
Example 3

Write the standard equation of the circel whose centre is at the origin and whose radius is 4. Sketch the graph.

$$x^2 + y^2 = r^2$$

$$x^2 + y^2 = 4^2$$

$$x^2 + y^2 = 16$$



Exercise

Sketch the following graph:

(a)
$$x^2 + y^2 = 36$$

(b)
$$x^2 + y^2 = 25$$

Lesson 37

Strand 4: Graphs

Sub-Strand 4.1: Graphs

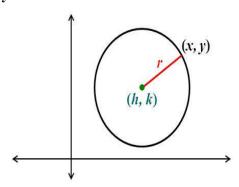
Learning Outcome: Determine the radius and sketch the circular graph.

Equation of a circle

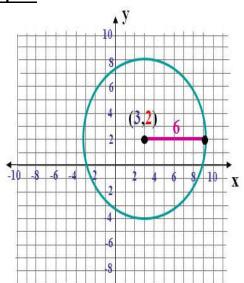
The equation of a circle with centre at (h, k) and the radius r units is:

$$(x-h)^2 + (y-k)^2 = r^2$$

Notes: h and k are arbitrary variables.



Example 1



What would be the equation for this circle?

$$h = 3$$

$$k = 2$$

$$r = 6$$

$$(x-3)^2+(y-2)^2=(6)^2$$

$$(x-3)^2 + (y-2)^2 = 36$$

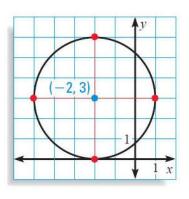
3

The equation of a circle is $(x + 2)^2 + (y - 3)^2 = 9$. Graph the circle.

Rewrite the equation to find the center and radius:

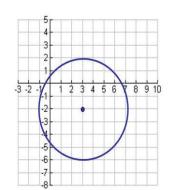
$$(x + 2)^2 + (y - 3)^2 = 9$$

 $[x - (-2)]^2 + (y - 3)^2 = 3^2$



Example 3

Write the standard form for the equation of a circle with center (3,-2) and radius of 4. Also the sketch the graph.



$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-3)^2 + (y-(-2))^2 = 4^2$$

$$(x-3)^2+(y+2)^2=16$$

Exercise

Sketch the following graph:

(a)
$$(x-2)^2 + (y-3)^2 = 4^2$$

(b)
$$(x+1)^2 + (y-2)^2 = 16$$

(c)
$$(x)^2 + (y+2)^2 = 9$$

Lesson 38

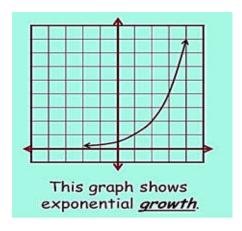
Strand 4: Graphs

Sub-Strand 4.1: Graphs

Learning Outcome: Sketch an exponetial graph

EXPONENTIAL GRAPH

• General form: $y = a^x$, where a > 0.



Note:

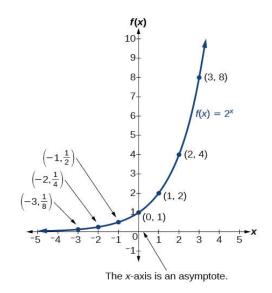
- 1. **y-intercept** is always at 1 (0, 1)
- 2. **x-axis** is an **asymptote** (line that the graph gets very close to but never crosses): y = 0

Example 1

Graph $y = 2^x$

Solution

X	-3	-2	-1	0	1	2	3
V	1/8	1/4	1/2	1	2.	4	8



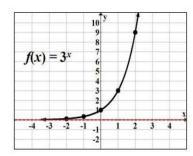
Sketch the graphs of
$$f(x) = 3^x$$
 and $f(x) = \left(\frac{1}{3}\right)^x$

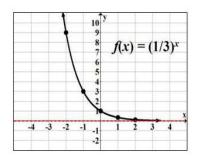
$$f(x) = 3^x$$

х	y = 3×
-2	$3^{-2} = 1/9$
-1	3-1 = 1/3
0	3º = 1
I	31 = 3
2	32 = 9

$$f(x) = (1/3)^x$$

X	y = (1/3)×
-2	$(1/3)^{-2} = 9$
-1	$(1/3)^{-1} = 3$
0	$(1/3)^0 = 1$
1	$(1/3)^1 = 1/3$
2	$(1/3)^2 = 1/9$





Exercise

Sketch the following graph:

(a)
$$y = 4^x$$

(b)
$$y = \left(\frac{1}{4}\right)^x$$

(a)
$$y = 4^x$$

(b) $y = \left(\frac{1}{4}\right)^x$
(c) $y = \left(\frac{1}{2}\right)^x$

Lesson 39 – Coordinate Geometry

Strand 5: Coordinate Geometry

Sub Strand: Application of coordinate geometry

Learning Outcome: Calculate the distance between two points using the distance formula.

What are coordinates?

❖ The coordinates are always written in a certain order that is:

- Horizontal distance first (x-values)
- Then **vertical** distance (y-values)
- This is known as Ordered Pairs
- \diamond Point of origin is known as (0,0)

For Example

(2, 3) - This simply means 2 units to the right and 3 units up

(0, -5) - This simply means 0 units to the right and 5 units to the left

Distance Formula

• This formula is used to find the distance between two points only.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Steps:

- 1. Use the distance formula
- 2. Label the two points as x_2, x_1, y_2, y_1
- 3. Put the values into the formula
- 4. Use the order of operation and simplify.

Example 1

Find the length of the line segment whose end points are (5,4) and (-3,4).

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-3 - 5)^2 + (4 - 4)^2}$$

$$= \sqrt{(-8)^2}$$

$$= \sqrt{64}$$

$$= 8 \text{ units}$$

Find the distance between the points P(-1, 5) and Q(3, -2).

THINK

- Let P have coordinates (x₁, y₁).
- 2 Let Q have coordinates (x2, y2).
- Find the length PQ by applying the formula for the distance between two points.

WRITE

Let
$$(x_1, y_1) = (-1, 5)$$

Let
$$(x_2, y_2) = (3, -2)$$

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{[3 - (-1)]^2 + (-2 - 5)^2}$$

$$= \sqrt{(4)^2 + (-7)^2}$$

$$= \sqrt{16 + 49}$$

$$= \sqrt{65}$$

= 8.06 (correct to 2 decimal places)

Class Activity

1. Find the distance between the following points.

- i. (2,5) and (6,8)
- ii. (-1,3) and (-7,-5)

Lesson 40

Strand 5: Coordinate Geometry

Sub Strand: Application of coordinate geometry

Learning Outcome: Calculate the distance between more than three points using the distance formula.

How to determine the distance if three or more points are given

- 1. Label the points using A,B and C
- 2. Find the 3 lengths (AB,AC,BC) between the points using the distance formula Note: if the length cannot be squared rooted evenly, leave in radical form.
- 3. If it is a right angled triangle then apply Pythagoras theorem $(a^2 + b^2 = c^2)$ to prove if it's a right angled triangle or not

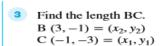
Prove that the points A (1,1), B (3,-1) and C (-1,-3) are the vertices of an isosceles triangle.

THINK

Plot the points and draw the triangle.

Note: For triangle ABC to be isosceles, two sides must have the same magnitude.

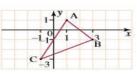
2 AC and BC seem to be equal. Find $AC = \sqrt{[1-(-1)]^2 + [1-(-3)]^2}$ the length AC. $A(1,1) = (x_2, y_2)$ $C(-1, -3) = (x_1, y_1)$



Find the length AB. $A(1,1) = (x_1, y_1)$ $B(3,-1) = (x_2, y_2)$

5 State your proof.

WRITE/DRAW

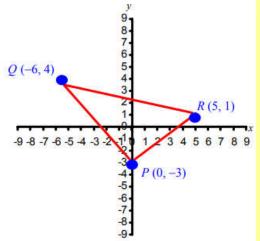


- $=\sqrt{(2)^2+(4)^2}$ $=\sqrt{20}$ $=2\sqrt{5}$
- BC = $\sqrt{[3 (-1)]^2 + [-1 (-3)]^2}$ $=\sqrt{(4)^2+(2)^2}$ $=\sqrt{20}$ $= 2\sqrt{5}$
- AB = $\sqrt{[3-(1)]^2 + [-1-(1)]^2}$ = $\sqrt{(2)^2 + (-2)^2}$ $= \sqrt{4 + 4}$ $=\sqrt{8}$ $=2\sqrt{2}$

Since $AC = BC \neq AB$, triangle ABC is an isosceles triangle.

Example 2

A triangle has vertices at P (0,-3), Q(-6,4) and R (5,1). Find the perimeter of the triangle to the nearest tenth of a unit and classify it



For the perimeter of ΔPQR , we must find the distances of \overline{PQ} , \overline{OR} and \overline{RP} .

$$\begin{aligned} d_{\overline{PQ}} &= \sqrt{(-6-0)^2 + (4--3)^2} & d_{\overline{QR}} &= \sqrt{(5--6)^2 + (1-4)^2} \\ &= \sqrt{(-6)^2 + 7^2} = \sqrt{36+49} & = \sqrt{11^2 + (-3)^2} = \sqrt{121+9} \\ d_{\overline{PQ}} &= \sqrt{85} & d_{\overline{QR}} &= \sqrt{130} \end{aligned}$$

$$d_{\overline{RP}} = \sqrt{(0-5)^2 + (-3-1)^2} Perimeter = \sqrt{85} + \sqrt{130} + \sqrt{41}$$

$$= \sqrt{(-5)^2 + (-4)^2} = \sqrt{25+16}$$

$$d_{\overline{RP}} = \sqrt{41}$$
Perimeter ≈ 27.0 units

Since all three sides of the triangle are different in length, it is a SCALENE TRIANGLE.

Class Activity

Prove that the points A (0, -3), B (-2, -1) and C (4, 3) are the vertices of an isosceles triangle

Worksheet

Strand 4 - Graphs

Sketch the following graph:

- (a) $x^2 + y^2 = 6$
- (b) $2x^2 + 2y^2 = 50$
- (c) $(x-3)^2 + (y)^2 = 4$
- (d) $y = \left(\frac{1}{5}\right)^x$

Strand 5: Coordinate Geometry

- 1. Find the distance between the points given below:
 - (a) (2, -8), (1, -7)
 - (b) (3,4), (-3,7)
 - (c) (1,6), (-3,-4)
- 2. Prove that the points P(4, -1), Q(5, 6) and R(1, 3) are the vertices of an isosceles triangle.
- 3. Show that the points D (1, 2), E (-6, 4) and F (5, -8) form a scalene triangle.
- 4. Show that the points A (7, 5), B (2, 3) and C (6, -7) are the vertices of a right triangle.